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ABSTRACT

A multi-decadal ensemble reforecast database is now available that is
approximately consistent with the operational 00 UTC cycle of the 2012 NOAA
Global Ensemble Forecast System (GEFS). The reforecast data set consists of an 11-
member ensemble run once each day from 0000 UTC initial conditions. Reforecasts
are run to +16 days. As with the operational 2012 GEFS, the reforecast is run at
T254L42 resolution (approximately ¥2-degree grid spacing, 42 levels) for week +1
forecasts and T190L42 (approximately 34-degree grid spacing) for the week +2
forecasts. Reforecasts were initialized with Climate Forecast System Reanalysis
initial conditions, and perturbations were generated using the ensemble transform

with rescaling technique. Reforecast data are available from 1985 to current.

Reforecast data sets were previously demonstrated to be very valuable for detecting
and correcting systematic errors in forecasts, especially forecasts of relatively rare
events and longer-lead forecasts. What is novel about this reforecast data set
relative to the first-generation NOAA reforecast is that: (a) a modern, currently
operational version of the forecast model is used (the previous reforecast used a
model version from 1998); (b) a much larger set of output data have been saved,
including variables relevant for precipitation, hydrologic, wind-energy, solar-
energy, severe weather, and tropical cyclone forecasting; and (c) the archived data

are at much higher resolution.

The article describes more about the reforecast configuration and provides a few
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examples of how these second-generation reforecast data may be used for research

and a variety of weather forecast applications.

CAPSULE SUMMARY

NOAA'’s second-generation global ensemble reforecast data set has been created and

are freely accessible to the weather forecast community.
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“Those who cannot remember the past are condemned to repeat it.”

- George Santayana

1. Introduction.

The weather and climate prediction community have made continued,
significant improvement in the quality of numerical forecast guidance. This has
come as a result of increased resolution, improved physical parameterizations,
improved chemistry and aerosol physics, improved estimates of the initial state
estimate due to better data assimilation techniques, and improved couplings
between the atmosphere with the land surface, cryosphere, and ocean, and
more. Nonetheless, judging from the pace of past improvements, medium-range
forecast systematic errors will not become negligibly small within the next decade
or two. For intermediate-resolution simulations such as those from current-
generation global ensemble systems, users of forecast guidance may notice biased
surface temperature forecasts, or precipitation forecasts with insufficient detail in
mountainous terrain, and perhaps too much drizzle or too little heavy rain. They
may notice over- or underestimated cloud cover, or that near-surface winds are
characteristically much stronger than forecast. They may notice that hurricanes are
too large in size but less intense than observed. Sometimes, however, systematic
errors may be less obvious. Does the model forecast of the Madden-Julian
Oscillation (M]JO; Zhang 2005) propagate too slowly or decay too quickly? Are
Arctic cold outbreaks too intense, and do they plunge south too quickly or too
slowly? Does the model over-forecast the frequency of tropical cyclogenesis in the

Caribbean Sea? Do tropical cyclones tend to recurve too quickly or slowly? Such
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questions may be hard to answer quantitatively with a month or even a year of
model guidance.

In such circumstances, reforecasts can be used to great advantage to
distinguish between the random and the model errors. Reforecasts are especially
helpful for statistically adjusting weather and climate forecasts to observed data,
ameliorating the errors and improving objective guidance (Hamill et al. 2006,
Hagedorn 2008). Reforecasts, also commonly called hindcasts, are retrospective
forecasts for many dates in the past, ideally conducted using the same forecast
model and same assimilation system used operationallyl. Reforecasts have been
shown to be particularly useful for the calibration of relatively uncommon
phenomena such as heavy precipitation (Hamill et al. 2008) and longer-lead
weather-climate phenomena (Hamill et al. 2004), where there is small forecast
signal and comparatively large noise due to chaos and model error. In both cases,
the large sample size afforded by reforecasts is useful for finding a suitably large
number of past similar forecast scenarios. With associated observational data, one
then can estimate a conditional distribution of the possible observed states given
today’s numerical guidance, assuming past forecasts have similar errors to current
forecasts. Even when no observed data are available for calibration, reforecasts can
be useful for determining the climatology of a model. A 20 ms-! surface wind would
be exceptionally strong in most locations on earth, but if the forecast model severely

over-forecasts wind speeds, such an event may be of less concern. A reforecast can

1 We prefer the term “reforecast” in this instance to “hindcast” so as to make the
association in the reader’s mind with reanalyses. This reforecast would not have
been very useful were there not a high-quality reanalysis to provide initial
conditions, here from the NCEP Climate Forecast System Reanalysis.
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thus be used for estimating the forecast climatology, placing the current forecast in
context (Lalaurette 2003ab).

The reforecast data set discussed here makes an unprecedentedly large
volume of data accessible to users. Over 27 years of once daily, 11-member
ensemble forecasts were computed using the same model version, the same
uncertainty parameterization, and a very similar method of ensemble initialization
to the currently operational NCEP Global Ensemble Forecast System (GEFS). More
than 125 TB of forecast output is conveniently available for fast-access download,
and the full model data set (~ 1 PB) is archived on tape. This data set is more
extensive than contemporary alternatives, such as the 5-member, ~20-year, weekly
reforecasts from the European Centre for Medium Range Weather Forecasts
(ECMWF; Hagedorn 2008, Hagedorn et al. 2011), and there is no charge for its
use. Daily lagged reforecasts were also generated for the National Centers for
Environmental Prediction (NCEP) Climate Forecast System (CFS) seasonal forecasts
(Saha et al. 2010).

We had several rationales for creating this extensive a reforecast data
set. This first is that we hope that the greater number of forecast samples from a
statistically consistent model will lead to the diagnosis of model errors and
development of novel and improved statistical calibration algorithms and
algorithms for rare events and for novel applications, algorithms that may be less
accurate were they developed with smaller training data sets. An example of this is

products for the renewable energy sector, such as extended-range wind and solar
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energy potential forecasts. We also hope that by making these data and
experimental products from it freely available, the data set will be used widely.

A second major reason for generating this extensive data set was to quantify
the benefits of this additional training data. Do we really need an exceptionally
large training sample size, or might the products be acceptably similar in skill were
they developed with a smaller reforecast data set, perhaps with fewer members,
fewer past years, or skipping days between samples? Generating a large reforecast
data set is computationally expensive and labor-intensive. For this data set, more
than 15 million CPU hours were used on the Department of Energy’s Lawrence
Berkeley Lab supercomputers, and approximately 5 person-years of effort were
expended to generate the reforecasts and set up the archives. Such extensive data
may also not be an unalloyed benefit; the reforecasts in the distant past may have
larger errors due to a thinner observing network. Hence, should reforecasting
become a regular component of National Weather Service’s suite of numerical
guidance, it will be helpful to determine the optimal configuration to apply to future
ensemble forecast systems, the compromise that provides adequate training data to
the statistical applications while being as computationally inexpensive as possible.

The next section of the article will discuss the contents of the data set and the
procedures to follow in order to download these data. Section 3 will demonstrate
some statistical characteristics of the raw reforecast data set. Section 4 describes

several forecast applications. Section 5 provides conclusions.
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2. A description of the reforecast data set and how to access it.

The operational configuration of the NCEP GEFS changed as of 12 UTC 14
February 2012. The real-time and reforecast model use version 9.0.1 of the GEFS,
discussed at http://www.emc.ncep.noaa.gov/GFS/impl.php. For more detail on the
GEFS, see Hamill et al. (2011a). During the first eight days of the operational GEFS
forecast and the reforecast, the model is run at T254L42 resolution, which with a
quadratic Gaussian transform grid is an equivalent grid spacing of approximately 40
km at 40° latitude, and 42 vertical levels. Starting at day +7.5, the forecasts are
integrated at T190L42, or approximately 54 km at 40° latitude, and data are saved
at this resolution from days +8 to days +16, the end of the GEFS integration period.
Note that there is a bug in version 9.0.1, resulting in the use of incorrect land surface
tables in the land-surface parameterization, which has introduced significant biases
to near-surface temperatures. These errors are at least consistent between the
current operational GEFS and the reforecast.

Through 20 February 2011, control initial conditions were generated by the
Climate Forecast System Reanalysis, or “CFSR” (Saha et al. 2010). This used the
Grid-Point Statistical Interpolation (GSI) System of Kleist et al. (2009) at
T382L64. From 20 February 2011 through May 2012, initial conditions were taken
from the operational GSI analysis, internally computed at T574L64. After 22 May
2012, the GSI was upgraded to use a hybrid ensemble Kalman filter-variational
analysis system (Hamill et al. 2011). This analysis improved the skill of operational
GEFS forecasts and thus of the reforecasts introduced into the archive subsequent to

that date.
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The perturbed initial conditions for both the operational GEFS and the
reforecast use the ensemble transform technique with rescaling, or “ETR” (Wei et al.
2008). For the operational real-time forecasts, 80 members are cycled for purposes
of generating the initial condition perturbations. However, only the leading 20
perturbations plus the control initial condition were used to initialize the
operational medium-range forecasts. The operational medium-range GEFS
forecasts are generated every six hours from 00, 06, 12, and 18 UTC initial
conditions. In comparison, the reforecast was generated only once daily, at 00 UTC,
and only 10 perturbed forecast members and the one control forecast were
generated. However, the six-hourly cycling of ETR perturbations was preserved,
though this cycling used only the 10 perturbed members rather than the 80 used in
real time. Model uncertainty in the GEFS is estimated with the stochastic tendencies
following Hou et al. (2008) for both operations and reforecasts.

Here are some details on the reforecast data that are available. About 28
years (Dec 1984 - Nov 2012) of reforecast data are currently archived. The archive
will soon include the 0000 UTC GEFS real-time forecasts, which will be available
with some delay, perhaps by 1100 UTC, though many fields will be available more
quickly via the NOAA/National Operational Model Archive and Distribution System
(NOMADS; nomads.ncdc.noaa.gov). 98 different forecast global fields are available
at 1-degree resolution, and 28 selected fields are also available at the native
resolution (~0.5-degree Gaussian grid spacing for the first week’s forecasts, and
~0.67-degree grid spacing for the second week’s forecasts). Data are internally

archived in GRIB2 format.
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(http://www.nco.ncep.noaa.gov/pmb/docs/grib2/). The 1-degree data were
created from the native resolution data via bilinear interpolation using wgrib2
software (http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2 /). The listing
of the fields that were saved and their resolutions are provided in Tables 1 and
2. Reforecast data were saved at 3-hourly intervals from 0 to 72 h, and every 6 h
thereafter. The 28+ years of data daily currently archived totals approximately 125
TB of internal storage.

Reforecast data can be accessed in many different ways. For users who want
a few select fields (say, precipitation forecasts) spanning many days, months, or
years, we provide a web interface for accessing such data. The URL is
http://esrl.noaa.gov/psd/forecasts/reforecast2/. The interface allows the user to
select particular fields, date ranges, domains, and type of ensemble information
(particular members, the mean, or the spread). While data are internally archived
in GRIB2 format, the synthesized files produced from a user’s web form input are in
netCDF format (http://www.unidata.ucar.edu/software/netcdf/) . Should a user
desire GRIB2 data instead, the raw data can be accessed via anonymous ftp at
ftp://ftp.cdc.noaa.gov/Projects/Reforecast2 or using wgrib2’s “fast downloading”
capabilities
(www.cpc.ncep.noaa.gov/products/wesley/fast downloading grib.html). We
request that users be conservative with their downloads in order to minimize
computations and bandwidth.

Some users may desire only selected days of reforecasts but want full model

output rather than the limited set of fields and levels available from ESRL. In this

10



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

case, the user can download these data from the tape archive at the US Department
of Energy. The web form for this is at

http://portal.nersc.gov/project/refcst/v2/. Such full data may be useful for, say,
initializing high-resolution regional reforecasts. An example of this will be

provided in section 4.

3. Characteristics of the raw reforecast data.

The skill of the second-generation global ensemble reforecasts has improved
very significantly from those from the first generation. Figure 1 shows a time series
of yearly-averaged global 500-hPa geopotential height anomaly correlations (AC)
from both systems. For recent years, the day +5 second-generation reforecasts are
more accurate than the day +3 first-generation reforecasts. Considering the
second-generation reforecast, there is a modest change in average skill of the
reforecasts during the 26-year period shown. Yearly average AC increases in the
version 2 reforecasts during the period with the change somewhat less than one
day. For example, the day+5 forecasts for 2009-2010 appear to be roughly
comparable to the day +4 forecasts (not shown) from 1985-1986. This is likely due
primarily to changes in the observing network and observation data processing
during the reanalysis period (Wang et al. 2011, Kumar et al. 2012)

Tropical cyclone forecast tracks were calculated using the GFDL tracker
algorithm (Gopalakrishnan et al. 2012). Figure 2 shows track statistics binned by
half decades. There has been a pronounced improvement in track forecasting

during the period of the reforecasts. This is at least in part due to greater changes in
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the forecast skill of the steering flow in the tropics, due to improvements in the
CFSR analyses over time. Tropical 500 hPa geopotential height anomaly
correlations improved by 1-2 days between 1985-1986 and 2009-2010 (not
shown). Such large changes in skill during the reforecast period can make it more
difficult to achieve high forecast accuracy with simple statistical post-processing
algorithms, for the forecast errors in past cases will not be fully representative of
current forecast errors. Some of these differences, however, also might be due to a
change in the accuracy of the observed locations; past observed tracks may not be as
accurate as more recent observed tracks. Our own internal computations of
blended climatology and persistence track forecasts (CLIPER; Neumann 1972)
shows that western Pacific CLIPER track errors have also decreased substantially in

the past 25 years.

4. Reforecast applications.
We anticipate that many groups will use this reforecast data set to explore,
compare, and validate methods for statistically post-processing the model
data. Here we consider the usage of the reforecast for post-processing 24-h
accumulated precipitation forecasts, both probabilistic and deterministic.
Previously, an analog technique was demonstrated with the first-generation
reforecasts as one of many possible method for statistically downscaling and
correcting the forecasts, improving their reliability and skill (Hamill et al. 2006,
Hamill and Whitaker 2006). Figure 3 shows Brier Skill Scores from the first- and

second-generation reforecasts, processed using the rank analog technique described
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more generally in Hamill and Whitaker (2006). Skill scores were calculated in the
conventional manner (Wilks 2006), ignoring the tendency to over-forecast skill by
not separating the data into subsets with homogeneous climatological uncertainty
(Hamill and Juras 2006). Analog dates were selected on similarities of past
ensemble-mean precipitation forecasts to the current ensemble-mean forecast for
the current grid point and others in a ~100-km (7x7 grid point) box around the
point of interest. Probabilities were then estimated from the ensemble of analyzed
conditions for the dates with the closest match. Different numbers of analogs were
used, depending on how unusual the precipitation forecast was for the day in
question. When the event was rather common, judged relative to the forecast
climatology, as many as 200 members were used. When the forecast event was in
the extreme tail of the forecast distribution, as few as 30 analogs were selected. The
use of fewer analogs for extreme events, especially for the short lead times,
improves the forecast skill (Hamill et al. 2006, Fig. 7). Confidence intervals were
calculated with a paired block bootstrap algorithm following Hamill (1999). North
American Regional Reanalysis (NARR) 24-h accumulated precipitation analysis data
(Mesinger et al. 2006, Fan et al. 2006) was used both for training (cross validated by
year) and verification. There are systematic errors with the NARR (Bukovsky and
Karoly 2007). Still, currently we know of no other precipitation analysis that has
the NARR'’s complete coverage of the contiguous US over the full period of the
reforecasts. We use it here, for better and worse.

The post-processed forecasts validated from 1985-2010 show an

improvement of slightly greater than +1 day additional lead time at the early
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forecast leads from the first to the second-generation reforecast, i.e., a 24-48 h
version 2 forecast could be made as skillfully as the previous 0-24 h forecast from
version 1. Atlonger leads, the improvement sometimes approaches +2 days
additional lead time. All differences are statistically significant. The improvement
of post-processed forecasts from version 1 to version 2 is smaller than the
improvement in the raw forecast guidance. This is to be expected; the post-
processing is correcting more systematic error in version 1 than in version 2. Post-
processed guidance from both versions are highly reliable, though forecasts from
version 2 tend to issue high and low probabilities more frequently, i.e., they are
more “sharp” (not shown). Forecast skill probably is over-estimated somewhat for
the samples early on in the reforecast period (say, the 1980’s), for the cross-
validated training procedure used analogs from future forecasts that were more
accurate. Experimental products based on this method are available over the
contiguous US in near-real time at

http://www.esrl.noaa.gov/psd/forecasts/reforecast2/analogs/index.html .

Deterministic forecasts can also be improved with the statistical post-
processing. A slightly different approach was used to generate the deterministic
forecast from the analogs. First, rather than using the observed on days with similar
forecasts, the difference between observed minus forecast on the days with the
closest analog forecasts was used to “dress” the current forecast; this provided
somewhat higher precipitation amounts when anomalously large events were
forecast. The mean of this dressed set of analog forecasts was then computed. As

with deterministic forecasts generated from an ensemble-mean forecast, the analog

14



314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

mean forecast tends to over-forecast the light precipitation and under-forecast
heavy precipitation. To ameliorate this, following Ebert’s probability-matched mean
approach (http://www.cawcr.gov.au/staff/eee/etrap/probmatch.html) the
ensemble mean of the analogs was adjusted before it was used as a deterministic
forecast. Specifically, for all the forecasts for a given month of the year, the
cumulative distribution function (CDF) of these analog ensemble-mean forecasts
was computed (cross-validated) using the current month and the surrounding two
months, as well as the CDF of the NARR data set. The quantile associated with the
current analog mean forecast relative to the forecast climatology was noted, and the
final deterministic forecast was the precipitation amount associated with the
corresponding analyzed quantile. Figure 4 shows that the analog post-processed
deterministic forecast skill also provides an improvement relative to either the GEFS
control or ensemble mean, particularly at the light precipitation amounts, where
apparently there was a drizzle over-forecast bias. The ensemble mean from the raw
ensemble shows a characteristic under-forecast bias, while the control forecast has
a slight over-forecast bias. Interestingly, the probability-matched mean analogs
provided little improvement in skill relative to the ensemble mean or control at the
longer forecast lead times. We believe that this is a consequence of applying the
probability-matching process. Though this improves forecast bias, if there is little
association between forecast and observed anomalies, as becomes more common at
longer leads as skill degrades, then the algorithm can become overconfident of
extreme events. For more on this, see Hamill and Whitaker (2006, Figs. 2, 7, and

associated discussion).
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These calibration approaches are relatively simple; they are univariate,
based only on the forecast precipitation amount, and they don’t factor in changes in
skill of the forecasts during the training period such as may be due to increasing
observational data density with time. Though not attempted here, there have been
several other methods proposed in the recent past that may also be worthy of
consideration, including quantile regression (Bremnes 2004), Bayesian model
averaging (Sloughter et al. 2007), logistic regression (Hamill et al. 2008), and
mixture models (Bentzien and Friedrichs 2012). We hope and expect that other
groups will explore methods that may extract further value from the extensive
reforecast data set, using different and new techniques and additional predictors,
and test them against existing techniques. This data set may be helpful in such
comparative evaluation of different methods.

Suppose now that a long time series of observations is not available to
accompany the time series of reforecasts. How can one leverage the reforecasts to
provide value-added guidance? Reanalyses might be used for the calibration, but
analyses may be contaminated somewhat by model forecast bias. Should the user
desire guidance for a point location, the reanalysis cannot provide this, only for the
grid-box averaged analyzed state. In such cases, perhaps usage of diagnostics like
the Extreme Forecast Index (EFI; LaLaurette 2003ab) may be of use. The EFI
quantifies how unusual the current ensemble guidance is relative to the climatology
of past forecast guidance. Ideally, even when the ensemble guidance is biased in

some fashion, it can still provide some advanced warning of potential extreme

16



359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

events. For such events, today’s ensemble guidance should be ranked in the
extreme quantiles of the distribution defined by the past forecasts.

Figure 5 considers the problem of extended range wind-energy forecasts,
specifically a +5 to +10 day forecast of 80-m above ground level wind speeds, a
common height of the hubs of wind turbines. Suppose a wind farm operator in
North Dakota does not have a multi-decadal time series of wind observations at hub
height, but they wish to extract some information from a reforecast that may
indicate when it would be relatively inexpensive to shut down a turbine for
maintenance. Figure 5(a) shows the ensemble mean forecast wind speed for a
particular case day in early 2010. The winds appear relatively light on average in
this location, but they might be biased. However, the availability of the reforecasts
allows that wind speed forecast to be placed in context. Figure 5(b) shows the
quantile of the ensemble-mean forecast wind speed relative to its climatology for
that month, a calculation similar in spirit to the EFI. The wind speed forecasts are
indeed unusually light in this location relative to their forecast climatology, which
ended up being consistent with analyzed conditions (Figs. 5 c,d).

Let’s turn our attention from post-processing to other potential applications
of the reforecasts. One possible application is to use the global reforecast ensemble
data as initial and lateral boundary conditions for a high-resolution regional
reforecast ensemble. The ability to perform high-resolution regional reforecasts
may be of interest to many, perhaps to examine the ability of a higher-resolution
regional model to provide value-added guidance for high-impact weather events. As

discussed in section 2, the full model output for the global reforecast ensemble is
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available on the U.S. Department of Energy website. An illustrative example of a
regional reforecast ensemble is shown in Fig. 6. Here, an 11-member ensemble 72-
hour forecast initialized at 0000 UTC 22 September 2005 for TC Rita was generated
using version 3.3 of the Advanced Hurricane Weather Research and Forecasting
(ARW) model, with 36 vertical levels up to 20 hPa (Skamarock et al. 2008). Details
of the modification of ARW for hurricane applications are described in Davis et al.
(2008). This implementation of ARW was run over a fixed 36-km domain that
covers the entire North Atlantic basin, North America, and the extreme eastern
North Pacific (see Fig. 2 and Table 1 in Galarneau and Davis (2012)). Two-way
moving nests of 12- and 4-km are located within the 36-km domain, and the
movement of these nests is determined by the TC's motion during the previous 6 h.
Specifics on the AHW configuration are as follows: WRF single-moment 6-class
microphysics (Hong et al. 2004), modified Tiedtke convective parameterization
(Zhang et al. 2011) on the 36- and 12-km domains (no parameterization on the 4-
km domain), Yonsei University boundary layer scheme (Hong et al. 2006), Goddard
shortwave scheme (Chou and Suarez 1994), Rapid Radiative Transfer Model
(Mlawer et al. 1997), and Noah land surface model (Ek et al. 2003).

The global reforecast ensemble shows a range of possible model trajectories,
including significant impact on Houston, Texas (Fig. 6a). The track forecast from the
global reforecast ensemble was consistent with the official National Hurricane
Center track forecast for Rita three days prior to landfall (not shown), which
resulted in an evacuation order for the Houston area. The track forecast had a

significant left-of-track error, as the observed storm made landfall farther northeast,
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near the Texas-Louisiana border. The intensity forecast was consistently
underestimated in the global reforecast ensemble (Fig. 6a inset), a common
characteristic with global data assimilation and forecast systems with grid spacing
of many tens of km. The ARW regional reforecast ensemble also had a left-of-track
forecast error, although the ensemble track envelope expanded slightly farther
northeast along the Gulf coast (Fig. 6b). That the left-of-track error appears in the
ARW reforecast ensemble in addition to the global model suggests that track errors
were driven by errors in the TC steering flow. This is modulated by large-scale
features such as the subtropical ridge over the southeast U.S. and an eastward-
moving mid-latitude trough over the central Great Plains (not shown). The ARW
reforecast ensemble inherited the initial under-estimate of intensity seen in the
global reforecast (Fig. 6a inset), but was able to intensify the storm to a major
hurricane by 48-h, just prior to landfall (Fig 6a and 6b insets).

Another potential application for reforecasts is to understand the ability of
the model to predict uncommon phenomena, or even the relationships between
several uncommon phenomena. As an example, let’s say that we wanted to
understand whether atmospheric blocking statistics (Tibaldi and Molteni 1990) can
be correctly forecast given a recently strong or weak MJO. To make the problem
more statistically challenging, let’s further suppose we are interested in the blocking
forecasts related to a certain phase of the MJO, where it is most pronounced in the
Indian Ocean, and at a certain time of the year, here December - January - February
(DJF). In such a situation, a year or two of past recent forecasts will not provide

enough samples.
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Using the first two empirical orthogonal functions of MJO variability
(Wheeler and Hendon 2004), commonly known as RMM; (Real-time Multivariate
M]0) and RMM5, a strong M]O, should it exist, would be classified as being in the
Indian Ocean roughly if RMM; = 0 and RMM: << 0. Accordingly, for the angle 6
defined by the arctangent of RMM; and RMM;, we define the Indian Ocean “strong
MJO” as occurring if -(m/2 + m/8) <0 <-m/2 + /8, and if the amplitude
(RMM12+RMM,%)1/2 is in the upper quartile of the climatology of analyzed
amplitudes for this phase and for DJF. Figure 7(a) shows the CFSR analyzed
unconditional Dec-Jan-Feb 1985-2010 blocking statistics and the blocking statistics
under a strong Indian Ocean MJO six days prior to the analysis. The lagged
observed blocking frequency from the Pacific to the Atlantic Ocean is apparently
strongly suppressed with strong M]Os relative to the climatology. Composites (not
shown) indicate that there are generally negative 500 hPa height anomalies in the
climatological ridges and positive anomalies in the troughs, resulting in generally
more zonal flow and less blocking. Fig. 7b shows the blocking frequency in the +6
day control member reforecasts (using analyzed RMM; and RMM, i.e., a -6 day lag
so that analyzed data are used to define the MJO indices). There is a similar
depression of the forecast blocking frequency under a strong MJO; the forecast
model does well at replicating the climatology of blocking and its relationship to this
phase of the MJO. This simple illustration shows how the reforecast data set offers
a unique opportunity to potentially diagnose and examine model systematic

forecast characteristics related to infrequent or low-frequency phenomena.
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5. Conclusions.

For the foreseeable future, weather and climate prediction model guidance
will be contaminated by at least some systematic errors. Since most end users want
reliable and accurate guidance, some statistical post-processing may be
helpful. Sometimes, such as for rare events and longer-lead forecasts, a long
training data set of “reforecasts” can be especially helpful. The large sample
provides enough similar cases to statistically correct the forecasts, even with
relatively uncommon events. Atlonger leads, the large sample can be helpful for
extracting a useful forecast signal from within the bath of chaotic noise and model
error (Hamill et al. 2004).

This article described one such data set, a second-generation experimental
reforecast that is approximately consistent with the 00 UTC cycle of the NCEP Global
Ensemble Forecast System as it was configured in 2012. We showed a variety of
uses of this reforecast data set, such as the statistical post-processing of
precipitation forecasts, the initialization of regional reforecasts, and the diagnosis of
the forecastability of uncommon phenomena.

This data set was generated from a large high-performance computing grant
by the U.S. Department of Energy to explore the potential for improving longer-lead
weather forecasts related to renewable energy; it was not created on NOAA
computers. Currently, NCEP has not allocated any of its high-performance
computing to the generation of reforecasts specific to weather time scales. While
we intend to keep running this version of the GEFS for the foreseeable future, even

after NCEP upgrades its GEFS, the regrettable truth is that soon enough the GEFS
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will change and the reforecast will be inconsistent with the operational version of
the model. ECMWF embraced some years ago the approach of computing a more
limited set reforecasts on their operational computer using whatever model version
is currently operational. In this way, their reforecast data set is continually relevant
to today’s model guidance. As NOAA determines the amount of high-performance
computing it needs in the coming years and decades, we expect that the computers
will be sized so that NOAA too can generate reforecasts (and the necessary
reanalyses) regularly, save the data, and make these readily available to the weather
enterprise. This current reforecast data set will help us decide on a realistic

configuration for such reforecasts.
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FIGURE CAPTIONS

Figure 1: Running mean (an average over the previous 365 days) of the 500-hPa
geopotential height anomaly correlation (AC) from the deterministic control
reforecasts. The filled areas denote anomaly correlation from the first-generation
GFS reforecast described in Hamill et al. (2006); the bounding lower line denotes
the Southern Hemisphere AC, the bounding upper line the Northern Hemisphere
AC. Blue indicates day +3 forecasts, pink indicates day+5 forecasts, green indicates
day+7 forecasts. The second-generation reforecasts are shown without filled areas;
thicker lines denote Northern Hemisphere AC, thinner lines the Southern
Hemisphere AC.

Figure 2: Global tropical cyclone track error (solid lines) and spread (dashed) over
~5 year periods during the reforecast. Statistics were accumulated only for 1 June
to 30 November of each year and included data from all basins.

Figure 3: Brier Skill Scores (BSS) of 24-h accumulated precipitation forecasts from
1985-2010 over the CONUS, post-processed using the rank analog technique. (a)
BSS for the > 2.5 mm 24 h-1 event. (b) BSS for the > 25 mm 24 h'! event. Scores are
plotted as a function of month of the year and for different forecast lead times from
1 to 6 days. Solid lines indicate the scores for the second-generation reforecast (V2),
dashed lines for the first-generation reforecast (V1). Black, green, red, blue, purple,
and orange lines indicate the respective skills for days +1 to +6. Edges of the shaded
gray regions provide the 5% and 95t percentiles of the confidence interval,
determined via a 1000-sample paired block bootstrap following Hamill (1999).

Figure 4: Equitable threat scores (ETS) and biases (BIA) for raw ensemble-mean
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forecasts, control forecasts and deterministic forecasts generated from post-
processed analog ensemble-mean forecasts. Panels (a), (b), and (c) provide ETS for
the > 0.5 mm 24h-! event, the > 5 mm 24h! event, and > 50 mm 24h-! event,
respectively. Panels (d), (e), and (f) provide BIA for these respective events. 5t and
95th percentile confidence intervals for the difference between the raw ensemble
mean and the deterministic analog are plotted over the analog results. Confidence
intervals were calculated with a 1000-sample block bootstrap following Hamill
(1999).

Figure 5: (a) +5 to +10 day forecast of ensemble-mean 80-m AGL wind speeds,
initialized at 00 UTC on 1 January 2010 for the period 00 UTC 6 January to 11
January 2010. (b) Quantile for this ensemble mean forecast relative to the
cumulative distribution of past ensemble mean forecasts for the month of

January. (c) as in (a), but for CFSR analyzed conditions, and (d) as in (b) but for
CFSR analyzed.

Figure 6: 72-h track forecast for hurricane Rita initialized at 0000 UTC 22
September 2005 from the (a) global GFS ensemble reforecast and (b) regional ARW
ensemble forecast. The individual ensemble member tracks are shown in gray
(control run in green) with red dots marking every 24 hours. The observed track is
shown in black with black dots marking every day at 0000 UTC. The inset in (a)
shows the intensity forecast for Rita from the global GFS ensemble (gray) and ARW
(red). The observed intensity is shown by the blue dashed contour. The black line
represents the ensemble mean and the shading encompasses intensity values within

the 5% and 95% percentiles. The inset in (b) shows the 48-h forecast composite
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reflectivity (shaded according to the color bar in dBZ) from the 4-km domain of the
control member of the ARW ensemble.

Figure 7: (a) Observed, and (b) +6 day forecast blocking frequency as a function of
latitude for December-January-February 1985-2010 (green lines) and for the subset
of cases with an Indian Ocean strong MJO as defined in the text. The MJO data were
defined 6 days prior to the analysis or the forecast. Grey area denotes differences
that are between the 5th and 95th percentile confidence intervals as determined

from a block bootstrap algorithm.
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Table 1: Reforecast variables available for selected mandatory and other vertical
levels. F indicates geopotential height, and an X indicates that this variable is
available from the reforecast data set at 1-degree resolution; a Y indicates that the
variable is available at the native ~0.5 degree resolution. AGL indicates “above

ground level.” Hybrid sigma-pressure vertical levels (a very close approximation to

sigma levels near the ground) are called “hyb.”
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680 Table 2: Single-level reforecast variables archived (and their units). Where an [Y]
681 s displayed, this indicates that this variable is available at the native ~0.5-degree
682  resolution as well as the 1-degree resolution.

683

Variable (units)

Mean sea-level pressure (Pa) [Y]

Skin temperature (K) [Y]

Soil temperature, 0.0 to 0.1 m depth (K) [Y]

Volumetric soil moisture content 0.0 to 0.1 m depth (fraction between wilting and
saturation) [Y]

Water equivalent of accumulated snow depth (kg m-?, i.e,, mm) [Y]

2-meter temperature (K) [Y]

2-meter specific humidity (kg kg! dry air) [Y]

Maximum temperature (K) in last 6-h period (00, 06, 12, 18 UTC) or in last 3-h
period (03, 09, 15, 21 UTC) [Y]

Minimum temperature (K) in last 6-h period (00, 06, 12, 18 UTC) or in last 3-h
period (03, 09, 15, 21 UTC) [Y]

10-m u wind component (ms1) [Y]

10-m v wind component (ms-1) [Y]

Total precipitation (kg m2, i.e,, mm) in last 6-h period (00, 06, 12, 18 UTC) or in
last 3-h period (03, 09, 15, 21 UTC) [Y]

Water runoff (kg m~, i.e, mm) [Y]

Average surface latent heat net flux (W m2) [Y]

Average sensible heat net flux (W m2) [Y]

Average ground heat net flux (W m-2) [Y]

Convective available potential energy (J kg1) [Y]
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684
685
686
687
6388
689
690

Convective inhibition (J kg1) [Y]

Precipitable water (kg m-, i.e, mm) [Y]

Total-column integrated condensate (kg m, i.e., mm) [Y]

Total cloud cover (%)

Downward short-wave radiation flux at the surface (W m-2) [Y]

Downward long-wave radiation flux at the surface (W m-2) [Y]

Upward short-wave radiation flux at the surface (W m-2) [Y]

Upward long-wave radiation flux at the surface (W m-2) [Y]

Upward long-wave radiation flux at the top of the atmosphere (W m2) [Y]

Potential vorticity on the 320K isentropic surface (x10-6 K m2 kg1 s-1)

U component on 2 PVU (1 PVU = 1x10-6 K m?2 kg1 s'1) isentropic surface (ms-1)

V component on 2 PVU isentropic surface (ms-1)

Temperature on 2 PVU isentropic surface (K)

Pressure on 2 PVU isentropic surface (Pa)

80-m u wind component (ms-1) [Y]

80-m v wind component (ms-1) [Y]

Vertical velocity at 850 hPa (Pa s'1)

Water runoff (kg m=2, i.e.,, mm)

Wind mixing energy at 80 m (J) [Y]
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Figure 1: Running mean (an average over the previous 365 days) of the 500-hPa
geopotential height anomaly correlation (AC) from the deterministic control
reforecasts. The filled areas denote anomaly correlation from the first-generation
GFS reforecast described in Hamill et al. (2006); the bounding lower line denotes
the Southern Hemisphere AC, the bounding upper line the Northern Hemisphere
AC. Blue indicates day+3 forecasts, pink indicates day+5 forecasts, green indicates
day +7 forecasts. The second-generation reforecasts are shown without filled areas;
thicker lines denote Northern Hemisphere AC, thinner lines the Southern

Hemisphere AC.
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Figure 2: Global tropical cyclone track error (solid lines) and spread (dashed) over
~5 year periods during the reforecast. Statistics were accumulated only for 1 June

to 30 November of each year and included data from all basins.
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Figure 3: Brier Skill Scores (BSS) of 24-h accumulated precipitation forecasts from
1985-2010 over the CONUS, post-processed using the rank analog technique. (a)
BSS for the > 2.5 mm 24 h-1 event. (b) BSS for the > 25 mm 24 h'! event. Scores are
plotted as a function of month of the year and for different forecast lead times from
1 to 6 days. Solid lines indicate the scores for the second-generation reforecast (V2),
dashed lines for the first-generation reforecast (V1). Black, green, red, blue, purple,
and orange lines indicate the respective skills for days +1 to +6. Edges of the shaded
gray regions provide the 5% and 95t percentiles of the confidence interval,

determined via a 1000-sample paired block bootstrap following Hamill (1999).
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Figure 4: Equitable threat scores (ETS) and biases (BIA) for ensemble-mean
forecasts, control forecasts and deterministic forecasts generated from post-
processed analog ensemble-mean forecasts. Panels (a), (b), and (c) provide ETS for
the > 0.5 mm 24h-! event, the > 5 mm 24h! event, and > 50 mm 24h-! event,
respectively. Panels (d), (e), and (f) provide BIA for these respective events. 5t and
95th percentile confidence intervals for the difference between the raw ensemble
mean and the deterministic analog are plotted over the analog results. Confidence
intervals were calculated with a 1000-sample block bootstrap following Hamill

(1999).
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Figure 5: (a) +5 to +10 day forecast of ensemble-mean 80-m AGL wind speeds,
initialized at 00 UTC on 1 January 2010 for the period 00 UTC 6 January to 11
January 2010. (b) Quantile for this ensemble mean forecast relative to the
cumulative distribution of past ensemble mean forecasts for the month of
January. (c) as in (a), but for CFSR analyzed conditions, and (d) as in (b) but for
CFSR analyzed.
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742  Figure 6: 72-h track forecast for hurricane Rita initialized at 0000 UTC 22

743  September 2005 from the (a) global GFS ensemble reforecast and (b) regional ARW
744  ensemble forecast. The individual ensemble member tracks are shown in gray

745  (control run in green) with red dots marking every 24 hours. The observed track is
746  shown in black with black dots marking every day at 0000 UTC. The inset in (a)

747  shows the intensity forecast for Rita from the global GFS ensemble (gray) and ARW
748  (red). The observed intensity is shown by the blue dashed contour. The black line
749  represents the ensemble mean and the shading encompasses intensity values within
750  the 5% and 95% percentiles. The inset in (b) shows the 48-h forecast composite

751  reflectivity (shaded according to the color bar in dBZ) from the 4-km domain of the

752  control member of the ARW ensemble.
753
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(a) Observed, Indian Ocean MJO, lag = -6 days
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(b) Day +6 forecast, Indian Ocean MJO, lag = -6 days
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758  Figure 7: (a) Observed, and (b) +6 day forecast blocking frequency as a function of
759 latitude for December-January-February 1985-2010 (green lines) and for the subset
760  of cases with an Indian Ocean strong MJO as defined in the text. The MJO data were
761  defined 6 days prior to the analysis or the forecast. Grey area denotes differences
762  that are between the 5th and 95th percentile confidence intervals as determined

763  from a block bootstrap algorithm.
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